segunda-feira, 23 de março de 2020

TERCEIRA QUANTIZAÇÃO E UNIFICAÇÃO GERAL PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



Um táquion (português brasileiro) ou taquião (português europeu) (do grego ταχυόνιονtakhyónion, de ταχύςtakhýs, i.e. "rápido", "veloz") é uma partícula hipotética cuja velocidade excede a velocidade da luz (v > c).[1] Embora não seja possível acelerar uma partícula com massa até que ela atinja ou ultrapasse a velocidade da luz, segundo a Teoria da Relatividade Especial,[2][3] esta não impede a existência de partículas com velocidade superior à da luz em seu estado natural.
A primeira descrição dos táquions é atribuída ao físico alemão Arnold Sommerfeld; no entanto foram George SudarshanOlexa-Myron Bilaniuk,[4][5] Vijay Deshpande[5] e Gerald Feinberg[6] (que originalmente cunhou o termo da década de 1960) os primeiros a avançarem nos estudos de suas bases teóricas. A teoria dos táquions foi em seguida desenvolvida nos anos 70 e 80 por diversos físicos, sobretudo por Erasmo Recami.[7] Recentemente, o assunto voltou a despertar interesse após os trabalhos de Hill e Cox[8] e de Vieira.[9] Campos taquiônicos aparecem em vários contextos, tal como a Teoria das Cordas.
Se táquions fossem convencionais, seriam partículas localizáveis (detectáveis) que poderiam ser usadas para enviar sinais mais rápidos do que a luz (FTL, do inglês faster than light). Pode-se assim pensar que a existência de táquions implicaria uma violação da Causalidade em Relatividade Especial, mas uma análise mais profunda mostra que este não é o caso.[7][9] (Veja também sobre o Paradoxo de Tolman[10] mais abaixo). Além disso, no âmbito da Teoria Quântica de Campos, táquions são entendidos como significando uma instabilidade do sistema e tratados como condensação de táquions, ao invés de partículas reais mais rápidas que a luz, e instabilidades, como são descritas por campos taquiônicos.
Campos taquiônicos apareceram teoricamente em uma variedade de contextos, como a teoria das cordas bosônicas. De acordo com o contemporâneo e amplamente aceito na compreensão do conceito de uma partícula, as partículas táquion são demasiado instáveis para serem tratadas como existentes.[11] Por essa teoria, a transmissão de informações mais rápida que a luz e a violação de causalidade com táquions são impossíveis.
Apesar dos argumentos teóricos contra a existência de partículas táquion, pesquisas experimentais têm sido conduzidas para testar a hipótese contra a sua existência, porém, nenhuma evidência experimental a favor ou contra a existência de partículas táquion foi encontrada.[12]
Se os taquiões existissem e fosse possível usá-los para transmitir informação, então eles poderiam ser usados para transmitir informação para trás no tempo, um tipo de viagem no tempo da informação. Este resultado é conhecido como Paradoxo de Tolman.[10] No entanto, aplicando resultados da mecânica quântica, é possível mostrar que se os taquiões existem, então uma das duas hipóteses necessariamente deve ser válida: ou eles estão localizados, mas neste caso a informação transmitida por eles viaja com v < c, ou eles carregam informações com v > c, mas neste caso eles não são localizados; em ambas hipóteses, taquions não servem para carregar informações com v > c.[1]

Observação de um táquion[editar | editar código-fonte]

Alt text
Efeitos da passagem de um taquion sob o ponto de vista de um observador. Para o observador, no momento em que se detecta o taquion, há uma aparente impressão de que este se aproxima e se afasta ao mesmo tempo do ponto de observação.
Dado que um táquion se move mais rápido que a velocidade da luz, não podemos vê-lo se aproximando, apenas os efeitos de sua passagem no ponto de observação poderão ser percebidos.
Em tese, após a passagem de um taquion, se observaria a partícula se deslocando aparentemente ao mesmo tempo, em duas direções opostas, provocando uma onda de choque radiativa ao passar por um meio isolante, resultando no efeito de radiação eletromagnética previsto por Cherenkov.
Devido a partícula se mover mais rápido que a luz, para o observador restará a impressão de que a particula subitamente apareceu, mostrando sua chegada e sua partida ao mesmo tempo. A ilustração ao lado demonstra esse efeito, onde em um determinado período T a partícula é detectada, gerando duas imagens opostas onde a esfera elíptica com desvio para o azul representa a imagem do taquion se aproximando, e a esfera em deformação com desvio para o vermelho representa o taquion se afastando.

Evidências experimentais[editar | editar código-fonte]

Desde sua proposição nos anos 1960, os experimentos conduzidos com o fim de detectar partículas de táquion foram infrutíferos ou com resultados possivelmente positivos mas que não puderam ser reproduzidos, como o obtido no experimento de ROGER W. CLAY & PHILIP C. CROUCH em 1974, no departamento de física da University of Adelaide (Austrália).[13]

Táquions na Teoria Relativista[editar | editar código-fonte]

Na relatividade especial, uma partícula mais rápida que a luz teria um momentum espacial quaternário, em contraste com as partículas "normais" que tem momentum temporal quaternário. Apesar de que em algumas teorias a massa dos táquions é levada como imaginária, em algumas formulações modernas a massa é considerada real,[14][15][16] as fórmulas para o momentum e energia foram redefinidas para isso. Além disso, visto que táquions estão restringidos para a porção espacial da gráfico energia-momentum, este não poderia desacelerar para velocidades subluminares.[17]

Massa[editar | editar código-fonte]

Na teoria invariante de Lorentz, as mesmas fórmulas aplicadas para partículas ordinárias mais lentas que a velocidade da luz (as vezes chamados de "bradions" em discussões de táquions) devem ser aplicadas para táquions. Em particular a relação energia-momentum:
E2 = (pc)2 + (mc2)2
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


(onde p é o momentum relativista do brandion e m é sua massa restante) deveria ainda aplicar-se com a fórmula da energia total de uma partícula:
E = mc2 . (√1 - v2/c2)-1.
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


Esta equação mostra que a energia total de uma partícula (brandion ou táquion) contém uma contribuição de sua massa restante e uma contribuição de seu movimento, a energia cinética. Quando v é maior que c, o denominador na equação para a energia é "imaginário", como o valor abaixo do radical é negativo. Pois a energia total deve ser real, o numerador deve também ser imaginário; i.e. a massa restante m deve ser imaginária, como um puro número imaginário dividido por outro puro número imaginário resulta em um número real.
Note que em algumas formulações modernas da teoria, a massa dos táquions é reconhecida como real.[14][15][16]



Fótons são produzidos por átomos quando um elétron de valência move-se de um orbital para outro orbital com (menos ou mais) energia negativa. Fótons também podem ser emitidos por um núcleo instável quando este decai por algum tipo de decaimento nuclear. Além disto, fótons são produzidos sempre que partículas carregadas são aceleradas.
Átomos continuamente emitem fótons devido suas colisões mútuas. A distribuição do comprimento de onda destes fótons portanto está relacionada a sua temperatura absoluta (usualmente em Kelvin). A distribuição de Maxwell-Boltzmann prevê a possibilidade de um fóton possuir um determinado comprimento de onda ao ser emitido por uma coleção de átomos a uma dada temperatura. O espectro de tais fótons normalmente se encontra entre a faixa da micro-onda e do infravermelho, mas objetos aquecidos irão emitir luz visível também.
Rádiotelevisãoradar e outros tipos de transmissores usados para telecomunicação e monitoramento remoto rotineiramente criam uma extensa variedade de fótons de baixa-energia pela oscilação de campos elétricos em condutoresMagnetrons emitem fótons coerente usado em fornos micro-ondaTubos Klystron são usados quando as emissões de micro-onda devem ser mais precisamente controladas. Masers e laser criam fótons monocromáticos por emissão estimulada. Fótons mais energéticos podem ser criados por decaimento nuclearaniquilação partícula-antipartícula, e colisão de partículas de alta energia.

Spin[editar | editar código-fonte]

Os fótons tem spin 1 e são, portanto, classificados como bósons. Os fótons são os mediadores dos campos eletromagnéticos. Por isto, eles são as partículas que possibilitam que outras partículas interajam com outras partículas eletromagnéticas e com campos eletromagnéticos, por isto eles são também conhecidos como bóson de calibre. Em geral, um bóson com spin 1 deveria possuir três projeções de spin distintas (-1, 0 e 1). Contudo, a projeção zero requer um referencial aonde o fóton esteja em repouso. Devido a sua massa de repouso ser zero, tal referencial não existe, de acordo com a teoria da relatividade. Então os fótons no vácuo sempre viajam a velocidade da luz, e mostram somente duas projeções de spin, correspondendo as duas polarizações circulares opostas. Por causa de sua massa intrínseca zero, fótons são consequentemente sempre polarizados transversalmente, da mesma forma que as ondas eletromagnéticas o são, no espaço vazio.

Estado quântico[editar | editar código-fonte]

luz visível do Sol, ou de uma lâmpada, é comumente uma mistura de muitos fótons de diferentes comprimentos de onda. Uma visão deste espectro de frequência, pode ser obtida por exemplo pela passagem da luz por um prisma. Neste co-denominado "estado misto", que estas fontes tendem a produzir, a luz se constitui de fótons em equilíbrio térmico (também denominado de radiação de corpo negro). Onde eles são de muita forma, semelhantes às partículas de um gás. Por exemplo, eles exercem pressão, conhecida como pressão de radiação, na qual (em parte) origina a aparência dos cometas quando eles estão viajando próximos ao Sol.
Por outro lado, um arranjo de fótons também pode existir em estados muito mais bem organizados. Por exemplo, nos denominados estados coerentes, descreve-se uma luz coerente como as emitidas por um laser ideal. O alto grau de precisão obtido com instrumentos a laser advém desta organização.

Absorção molecular[editar | editar código-fonte]

Uma molécula típica, , possui vários níveis de energia diferentes. Quando uma molécula absorve um fóton, sua energia aumenta em uma quantidade igual à da energia do fóton. A molécula então entra em um estado excitado.
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

Fótons no vácuo[editar | editar código-fonte]

No espaço vazio, conhecido como vácuo perfeito, todos os fótons se movem a velocidade da luzc, determinada como sendo igual a 299 792 458 metros por segundo, ou aproximadamente 3×108  m  s−1. O metro é definido como a distância percorrida pela luz no vácuo em 1/299 792 458 de um segundo, como a velocidade da luz não oferece qualquer incerteza experimental, diferente do metro ou do segundo, tanto que confiamos no segundo sendo definido por meio de um relógio muito preciso.
Segundo um princípio da relatividade restrita de Einstein, todas as observações da velocidade da luz no vácuo são as mesmas para todas as direções e para qualquer observador em um referencial inercial. Este princípio é geralmente aceito na física desde que muitas consequências práticas para as partículas de alta-energia tem sido observadas.

Fótons na matéria[editar | editar código-fonte]

Quando fótons passam através de material, tal como num prisma, frequências diferentes são transmitidas em velocidades diferentes. Isto é chamado de refração e resulta na dispersão das cores, onde fótons de diferentes frequências saem em diferentes ângulos. Um fenômeno similar ocorre na reflexão onde superfícies podem refletir fótons de várias frequências em diferentes ângulos.
relação de dispersão associada para fótons é uma relação entre a frequênciaf, e comprimento de onda, λ. ou, equivalentemente, entre sua energiaE, e momentop. Isto é simples no vácuo, desde que a velocidade da onda, v, é dada por
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

As relações quânticas do fóton são:
 e 
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

Onde h é constante de Planck. Então nós podemos escrever esta relação como:
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
que é característica de uma partícula de massa zero. Desta forma vemos como a notável constante de Planck relaciona os aspectos de onda e partícula.
Em um material, um par de fótons para a excitação do meio e comportamento diferente. Estas excitações podem ser frequentemente descritas como quase-partículas (tais como fónos e excitons); isto é, como onda quantizadas ou entidades quase-partículas propagando-se através da matéria. O "Acoplamento" significa que os fótons podem transformar nesta excitação (isto é, o fóton são absorvidos e o meio excitado, envolvendo a criação das quase-partículas) e vice-versa (as quase-partículas transformam-se de volta em um fóton, ou o meio relaxa pela re-emissão de energia na forma de fótons). Contudo , como estas transformações são as únicas possíveis, eles não estão ligados para acontecer e o que realmente propaga-se através do meio é uma polarização; isto é, uma superposição quântica-mecânica da energia quântica iniciada em um fóton e de uma excitação de uma quase partícula material.
De acordo com as regras da mecânica quântica, uma medição (aqui: na observação é que acontece a polarização) quebra a superposição; isto é, o quantum é absorvido pelo meio e permanece lá (como acontece em um meio opaco) ou re-emerge como um fóton da superfície para o espaço (como acontece em um meio transparente).
Excitações no material tem uma dispersão não-linear; isto é; seu momento não é proporcional a sua energia. Portanto, estas partículas se propagam mais devagar do que a velocidade da luz no vácuo. (A velocidade de propagação é a derivada da relação dispersão com seu respectivo momento.) Esta é a razão formal porque a luz é mais lenta em um meio (tal como o vidro) do que no vácuo. (A razão da difração pode ser deduzida disto pelo princípio de Huygens.) Outro meio de explicar isto é dizer que o fóton, por começar a se misturar com o meio excitado para forma a polarização, adquire um efeito de massa, o que significa que ele não pode viajar a c, a velocidade da luz no vácuo.
Os quanta (plural de quantum) virtuais são partículas hipotéticas trocadas entre partículas carregadas. Se são partículas verdadeiras ou não é um assunto sujeito a uma certa controvérsia. Supõe-se que efeitos como o efeito Casimir sejam provas evidentes da existência de fotões virtuais, embora essa hipótese não seja totalmente aceita.[carece de fontes]

Referências